Copyright @ BlueCatBio. All rights reserved.

The BlueWasher operates without a waste pump.

Centrifugation mimicks "dump and tap" - simple automation of manual SOPs

  • Typical z' gain: 0.1 - 0.3
  • 10x lower residual volume reduces assay background and variability
  • Cleaner images
  • No cell loss from aspiration needles
  • Homogeneous evacuation
  • No assay data lost to clogged cannulas or warped plates
  • No need to re-calibrate needle positions
  • Residual volumes constant over time

Our BlueWasher's award-winning ability to improve z' for adherent cellular assays makes it the most cost-effective tool to boost drug discovery productivity.   Residual volumes 10x lower than conventional, tip-based plate washers reduce assay background and variability, allowing imagers to produce even better data.  Ideal for assay development, high-throughput screening (HTS), high-content screening (HCS), 3 dimensional cell screens with n3D, FLIPR®, or expression assays, including 1536w, as part of a fully automated system, or a stand-alone workstation.

Better Data,

More Productive Discovery

FLIPR ® is a registered trademark of Molecular Devices, LLC

Validation of Magnetic 3D Spheroid Bioprinting in Combination with a BlueWasher
Shurong Hou1, Pierre Baillargeon1, Glauco R. Souza2, Jan Seldin3, Frank Feist4, Louis Scampavia1 and Timothy Spicer1
1The Scripps Research Institute Molecular Screening Center, Scripps Florida, 130 Scripps Way, Jupiter, Florida, USA
2Nano3D Biosciences, Inc. and University of Texas Health Science Center at Houston, Houston Texas, 7000 Fannin St., Houston TX, USA
3Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC, USA
4BlueCatBio MA, Inc., 58 Elsinore St., Concord, MA, USA

Abstract
Three-dimensional (3D) cell models are thought to better mimic the complexity of in vivo tumors. We have previously enabled an HTS-compatible method using cell-repellent plates combined with a magnetic force bioprinting technology that affords large scale testing of spheroids and organoids in flat-bottom 384 and 1536 well plates. This type of 3D biology requires tissue culture in suspension which makes feeding, media transfers, washing, etc., problematic. To address this we combined the 384 well formatted magnetic 3D (m3D) Bioprinting technology with the utility of the BlueWasher equipped with magnetic spin features. We validated this system for rapid removal and replacement of media to facilitate adaptation of a non-homogeneous format within 3D HTS. Our work demonstrates the effectiveness of both the m3D bioprinting system and the BlueWasher in the following aspects in 384 well plates: 1) Retention of 3D spheroids and their integrity 2) Precision and accuracy of liquid manipulation 3) Qualification in terms of compound controls, Z’ and S:B when using phenotypic 3D primary pancreatic tumor cell based assays.
  • <30sec to evacuate any plate format, including 1536 well
  • 40cm x 70cm footprint
  • No need for compressed air or vacuum

High Throughput, Small Footprint

Miss fewer active compounds

Reduce false positives

No clogged needles,

more reproducible data

More Reliable Screens

  • Low residual eliminates wash steps
  • Simpler automation of manual assays
  • Simpler transition to 1536w
  • No need for complex design of "squirt-squirt-read" assays

Fast, compact and quiet

Simpler Assay Design

Enabling 1536-Well High-Throughput Cell-Based Screening through the Application of Novel Centrifugal Plate Washing.
Knight S, Plant H, McWilliams L, Murray D, Dixon-Steele R, Varghese A, Harper P, Ramne A, McArdle P, Engberg S, Bennett N, Blackett C, Wigglesworth M.
Author information

Abstract
Cell-based assays have long been important within hit discovery paradigms; however, improving the disease relevance of the assay system can positively affect the translation of small-molecule drug discovery, especially if adopted in the initial hit identification assay. Consequently, there is an increasing need for disease-relevant assay systems capable of running at large scale, including the use of induced pluripotent stem cells and donor-derived primary cells. Major hurdles to adopting these assays for high-throughput screening are the cost, availability of cells, and complex protocols. Miniaturization of such assays to 1536-well format is an approach that can reduce costs and increase throughput. Adaptation of these complex cell assays to 1536-well format brings major challenges in liquid handling for high-content assays requiring washing steps and coating of plates. In addition, problematic edge effects and reduced assay quality are frequently encountered. In this study, we describe the novel application of a centrifugal plate washer to facilitate miniaturization of a range of 1536-well cell assays and techniques to reduce edge effects, all of which improved throughput and data quality. Cell assays currently limited in throughput because of cost and complex protocols may be enabled by the techniques presented in this study.

KEYWORDS:
1536-well; cell assays; high-throughput; miniaturization; phenotypic screening

PMID:28027450, DOI:10.1177/2472555216683650
BlueWasher enables automation-friendly workflow for 3D cellular screening with n3D cell magnetization technology
BlueWasher enables 1536-Well High-Throughput Cell-Based Screening
LINK TO PAPER
by Sinead Knight et. al., AstraZeneca